How a Formula 1 Internal Combustion Engine Works

The Formula One Championship-winning Power Units of the last five years: Mercedes-AMG F1 M09 EQ Power+ (2018), Mercedes-AMG F1 M08 EQ Power+ (2017), Mercedes-Benz PU106C Hybrid (2016), Mercedes-Benz PU106B Hybrid (2015), Mercedes-Benz PU106A Hybrid (2014)

The current generation of Formula One cars are powered by high-performance downsized, turbocharged and electrified hybrid Power Units. This week, we’re looking at the mechanical heart of the Mercedes-AMG Petronas Power Unit, the Internal Combustion Engine and its Formula 1 engine development journey since 2014. 

What elements make up a Formula One Power Unit? 

The FIA distinguishes between six elements in a modern F1 Power Unit (PU). At the very heart of the PU sits the Internal Combustion Engine (ICE). It’s a structural member of the car, connecting the chassis to the gearbox.

The current F1 engines are six-cylinder engines, constructed in a V-configuration at 90 degrees, with a 1.6-litre displacement.

The second element is the turbocharger (TC), which increases the density of the air that is consumed by the engine, thus giving the engine more power.

A modern F1 engine is a hybrid engine, with two electric machines recovering and delivering energy. There’s the Motor Generator Unit-Kinetic (MGU-K), which harnesses kinetic energy when the car is braking, and the Motor Generator Unit-Heat (MGU-H), which is connected to the turbocharger and harnesses excess energy from the exhaust.

Both motor generator units convert their respective energy sources into electrical energy which can then be used to propel the car. The electric energy is stored in the fifth element of the Power Unit – a big battery pack known as the Energy Store (ES).

This intricate system of different components is controlled by the sixth and final element, the Control Electronics (CE).

Drivers are permitted three ICE, MGU-H and TC and two ES, CE and MGU-K during the course of a season, but any combination of parts can be fitted to the car. If a driver exceeds this limit, they are given a grid penalty.

How does the combustion process work in a Formula 1 Internal Combustion Engine? 

At the heart of the ICE is the combustion process where fuel and air are mixed and ignited to liberate energy. This process works in the same way it does on your road car; however, the systems are a bit more intricate.

Looking at it in more detail, the combustion air is fed to the engine through an air duct that sits behind the roll hoop. The air pressure is increased by a compressor which is part of the turbocharger.

This process also increases the air temperature, so the air needs to be cooled again in a charge cooler before it’s fed into the plenums at the top of the engine.

From there, it passes down the six inlet ports and past two inlet valves into the cylinders. That’s where the fuel comes into effect.

F1 engines are direct injection, like most modern road cars, so the fuel is injected directly into the combustion chamber.

The fuel is injected at a maximum of 500 bar, which is limited by the regulations. While that is more than you would find on a direct-injection petrol engine in a road car, which usually sees pressures of up to 350 bar, it is actually quite a bit less than you might find in a modern diesel, where fuel pressures can reach up to 2,500 bar.

The air and fuel mixture is compressed by the piston before a spark plug ignites it. The force of the combustion pushes down the piston, which is connected to the crankshaft through a connecting rod and is, therefore, able to drive the crankshaft.

When the piston comes back up, the exhaust valves open to release the exhaust gases from the engine, so that the whole process can start all over again – up to a maximum of 15,000 times every minute (or up to 250 times a second).

The exhaust gases are used to drive the turbine wheel of the turbocharger which in turn drives the compressor. What’s left then exits through the tailpipe at the rear of the car, with a wastegate system being used to control the pressure during this phase. 

What other systems are part of the F1 Internal Combustion Engine? 

Very intricate and complex oil and water systems are also featured in the engine, weaving between the different elements.

These keep the engine running smoothly and regulate temperature, which is incredibly important when you consider that the gas temperatures in the combustion chamber can reach up to 2,600°C.

The water system’s main job is to manage the temperatures of the many different elements and materials that make up the F1 Power Unit. From the crankcase to the top of the cylinder head, it’s all about making sure the engine doesn’t overheat.

A great deal of engineering goes into that, from managing the flow of water, to the pump efficiency. 

What kind of gains has the Mercedes-AMG Petronas team found since 2014? 

The Power Unit regulations have remained fairly stable since they were introduced for the start of the 2014 season, so the general philosophy of the PU hasn’t deviated significantly from the original version that debuted five years ago.

However, thanks to numerous changes in many areas, the team at Mercedes-AMG High Performance Powertrains in Brixworth has been able to improve every element of the Power Unit, producing more power and improving thermal efficiency.

In 2014, the PU produced just over 900hp and had a thermal efficiency of 44%. That means that 44% of the energy in the fuel was converted into useful work to propel the car.

Over the next years, the thermal efficiency was steadily improved, eventually breaking the 50% thermal efficiency barrier on the dyno in 2017. 

Did the team do any other work on the gas flow in the engine? 

Another major area for improvement has been the exhaust system. Its shape, length and diameter have a massive impact on the performance of the engine, because the quicker the exhaust gases from the combustion process can be pushed out of the combustion chamber, the faster the new firing cycle can start.

In 2014, the team used a lightweight exhaust system that was running the shortest possible route from the cylinder head to the turbine of the turbocharger.

This system had two advantages – it didn’t add a lot of weight and the short pipes meant that there was not a lot of heat loss on the way to the turbine of the turbocharger and the MGU-H.

However, the team introduced a more complex system in 2015 which helped to increase the power output of the engine. In this tuned exhaust, the primary pipes – the six pipes leading straight from the cylinder head – were the same length, but the secondary pipe was longer, thus altering the power curve and the power output of the engine.

Since then, the team has introduced a new exhaust system every year, extracting more from the engine each time. 

What other areas of the engine did the team focus on? 

One other area where the team has made improvements is the materials we use. Large parts of the engine are metallic (for example, the cylinder head is made from aluminium) but the rules don’t always specify what metals must be used.

Choosing the right alloys for the right components can impact both the reliability and the performance of the engine.

Another area that the team is constantly working on is friction reduction. Friction takes power away – while the energy goes into heat rejection. This is where PETRONAS lubricants play an important role as the oil film between loaded components reduces friction and therefore increases power, but also reduces the wear and increases reliability.

Getting the oil to and from the location in the engine where it is needed is also a development area. The engine is subjected to enormous G forces, it can experience up to four or five times the force of gravity when the car is braking, accelerating or thrown into a corner.

Making sure the oil reaches every component that needs it but also getting it out of the engine again requires a very complex scavenging system. There are about ten oil pumps at the bottom of the engine, drawing oil from the cylinder head, the crankshaft, but also some of the ancillaries to make sure that the oil tank never runs dry. 

What role does Formula 1 fuel play in the hunt for performance? 

Formula 1 fuel is at the very heart of the combustion process and has a significant influence on the performance of the engine. The regulations state that the fuel needs to be unleaded, so it’s like the kind of fuel you would use in a road car.

Does that mean you could potentially run an F1 Power Unit with regular road car petrol from your local filling station? You could – but it would require some changes to the calibration, for example to the ignition.

You would also experience a very noticeable drop in performance. Why? Because the PETRONAS Primax fuel that the team uses has been developed over the last eight years and is minutely calibrated to work perfectly with the Mercedes Power Unit.

A group of PETRONAS engineers is constantly working on the chemical composition of the fuel to make sure its characteristics match those required by the engine. This development work is done in close cooperation with the thermodynamic engineers at HPP.

How long does it take to build a Formula 1 Power Unit and what is the process?

Power Units are complex machines and the more powerful they’ve become, the more complex they’ve grown. Back in 2014, it took a team of two people about two weeks to build a Power Unit.

Fast forward to 2019 and the same task would take about three weeks with the same number of people. Therefore, the team at Brixworth had to try and condense that time so that it wouldn’t lose precious development time to the build process, and to do so, they added more people to the build process. So, two weeks has been maintained but with an additional person involved. 

From where did the Mercedes team find more performance in recent years? 

In the past six years, the team has looked at every single bit of the engine to find more performance and better efficiency. One area that the team did a lot of work on was the flow of gases in the engine – both in the form of the combustion air being fed into the engine and the exhaust gases coming out of it.

In terms of the inlet system, one crucial area of development has been the plenums. They sit on top of the engine between the charge cooler and the inlet valves. The two plenums, one for each cylinder bank, hold pressurised air that is coming in from the compressor, providing a stable source of compressed air despite varying supply (owing to varying compressor speeds) and demand (an idling engine needs less air than one running at full throttle).

From the plenums, the combustion air is fed through various inlet systems into the cylinders. The rules in 2014 demanded a fixed geometry system for the plenums, leaving little room for any performance gains.

This rule changed for the following season, giving the engineers a new avenue to pursue. As a result, the plenums have not only increased in size, but also house a much more complex trumpet system. These trumpet-shaped ducts vary in length and thus match the tuned length to the engine speed and help to maximise the amount of air that is fed into the engine.

In 2015, the trumpets turned into something that’s more like a trombone, where the inlet trumpet is sliding up and down on a port system, changing the length of the intake system with every move. This means the trumpet system and therefore the airflow can be adapted to the engine speed, providing the best length for different RPMs to produce the most power.

Part of this evolution is even visible from the outside: since 2015, the plenums have increased in size every year, with carbon fibre extending the full length of the engine now and even pushing out the bodywork around the engine cover. This is why you can see small bumps on each side of the engine cover. 

Are Formula 1 engines hybrid?

In 2014, hybrid components were introduced, resulting in a change in terminology. Rather than just ‘engines’, modern F1 cars are all fitted with a whole ‘power unit’ system. An Internal Combustion Engine (ICE) forms the heart of these power units. This is the V6 engine with a 1.6-litre displacement.

A turbocharger has been added to this ICE. By increasing the density of the air the engine breathes in, this device increases its power. The exhaust-driven turbine also helps generate additional power from residual engine heat.

On top of the ICE and Turbocharger, there is a full Energy Recovery System (ERS), which captures the energy produced by the car on track, stores it, and can then re-use it to provide more power. The redeployed power is equal to 160 horsepower, which can be used for up to 33 seconds of a racing lap.

Two of the ERS’s most crucial components are the MGU-H and MGU-K. The exhaust gases are used to power the MGU-H (Motor Generator Unit – Heat). Rather than letting heat escape through the exhaust, the MGU-H harnesses it and converts it into electricity. By capturing the escaping heat, the MGU-H generates electricity and returns it to the Energy Store as the engine and turbo increase speed.

An electric generator and motor together make up MGU-K (Motor Generator Unit – Kinetic). It provides power under acceleration when connected to the ICE. During braking, it also generates energy. Normally, the heat that would escape the brakes is captured and used to generate electricity that is stored in the Energy Store.

Simply put, the Energy Store (ES) is the car’s battery. Energy generated by the ERS is stored here until it is needed for deployment. During one lap, it can store and redeploy up to 4 megajoules of energy.

The Control Electronics (CE) integrates all other components of the ERS together. The code ensures that all the systems communicate with each other and work properly.

For a Formula 1 car, each of these components is crucial. If a single part of the Energy Recovery System fails, a car may be able to drive, but it will result in mechanical issues, a loss of speed and power, and increased fuel consumption. The car is unlikely to finish a race if one of these parts fails.

What engine is used in Formula 1?

A Formula One engine is currently a 1.6 litre four-stroke double-overhead camshaft (DOHC) reciprocating four-stroke turbocharged 90 degree V6 engine. In 2014, they appeared for the first time, and they have been further developed since then.

The FIA began negotiating in 2017 with existing constructors and potential new manufacturers about the next generation of engines, which was initially scheduled for introduction in 2021 but was delayed to 2022. In the original proposal, the goal was to simplify engine designs, cut costs, promote new manufacturers, and address criticisms launched against the 2014 generation. It proposed retaining the 1.6 L V6 configuration while abandoning the complex Motor Generator Unit-Heat (MGU-H) system.

What is the most powerful F1 engine ever?

The BMW M12/13/1 is the most powerful F1 engine ever made. 

Power would drop to around 1,000 horsepower because boost levels were limited to ensure reliability during the race. The BMW M12/13/1 of 1986, which powered Benetton, Brabham, and Arrows, remains the most powerful engine to ever power a Formula 1 car.

Do all F1 cars have the same engine?

Cars are not the same. Each manufacturer makes their own car, and therefore one manufacturer might have a faster car than the other. Also, some teams are customers of other manufacturers when it comes to Power Unites. For example, Red Bull uses Honda engines, while McLaren uses Mercedes engines.

How fast is a Formula 1 car from zero to 60?

F1 cars accelerate from 0 – 60mph in roughly 2.6 seconds.

Although this might seem slow given their top speed, a majority of their speed comes from aerodynamics, which work more efficiently the faster the car goes, since they can’t unleash full power from a stop.

The Formula One Championship-winning Power Units of the last five years:  Mercedes-AMG F1 M09 EQ Power+ (2018), Mercedes-AMG F1 M08 EQ Power+ (2017), Mercedes-Benz PU106C Hybrid (2016), Mercedes-Benz PU106B Hybrid (2015), Mercedes-Benz PU106A Hybrid (2014) - How a Formula 1 Internal Combustion Engine Works
The Formula One Championship-winning Power Units of the last five years: Mercedes-AMG F1 M09 EQ Power+ (2018), Mercedes-AMG F1 M08 EQ Power+ (2017), Mercedes-Benz PU106C Hybrid (2016), Mercedes-Benz PU106B Hybrid (2015), Mercedes-Benz PU106A Hybrid (2014)

Leave a Comment

Subscribe
Notify of
guest
4 Comments
Inline Feedbacks
View all comments

Recommended For You

How Are F1 Cars Shipped Between Countries?

Formula One (F1) is one of the worlds most popular ...

Formula 1 vs IndyCar – Which Is Faster?

Formula 1 vs IndyCar - Which is faster? Both racing ...
How Does A Formula 1 Car Work?

How Does A Formula 1 Car Work?

With so much speed and power, how does a Formula ...
How Do Teams Develop An F1 Car?

How Do Teams Develop An F1 Car?

How do teams develop an F1 car? As with most ...
What Are F1 Sprint Qualifying Races?

What Are F1 Sprint Qualifying Races?

Just what are F1 sprint qualifying races? The British Grand ...

More in News

AUSTIN, TEXAS - OCTOBER 24: Race winner Max Verstappen of Netherlands and Red Bull Racing celebrates with Red Bull Racing Team Consultant Dr Helmut Marko in parc ferme during the F1 Grand Prix of USA at Circuit of The Americas on October 24, 2021 in Austin, Texas. (Photo by Chris Graythen/Getty Images) // Getty Images / Red Bull Content Pool // SI202110250013 // Usage for editorial use only //

Max Verstappen Wins Engrossing USA GP

In a race that lacked some of the on-track drama ...
2021 United States Grand Prix, Sunday - Lewis Hamilton

Lewis Hamilton Loses Ground In Championship Battle

Scorching temperatures, sunny skies and packed grandstands at COTA created ...
2021 United States Grand Prix Sunday - Kimi Räikkönen

Kimi Räikkönen Throws Away A Point In Austin

Alfa Romeo Racing ORLEN went so close to a deserved ...
Esteban Ocon (FRA) Alpine F1 Team A521. United States Grand Prix, Sunday 24th October 2021. Circuit of the Americas, Austin, Texas, USA.

Alpine Leaves Austin Empty Handed After Late Misfortune

Alpine F1 Team depart from Austin without a point after ...
2021 United States Grand Prix Tyre Performance Analysis

2021 United States Grand Prix Tyre Performance Analysis

2021 United States Grand Prix Tyre Performance Analysis: Red Bull's ...

Trending on F1 Chronicle